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Bayesian method for global optimization
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We introduce a Bayesian approach for obtaining the global optimum of multimodal functions. The set of
observed minima of a multimodal function is viewed as a sample from a multinomial distribution, whose cells
correspond to the basins of attraction of the local optima. We then derive the posterior distribution of the
number of local optima. This posterior information is obtained from a Bayesian analysis and is used to
construct a stopping criterion forsequentiarandom search method which finds the optimal tradeoff between
reliability and computational effort. The computational complexity of this global optimization method is a
strong function of the total number of local optima and a weak function of the dimensions of the configuration
space. Application to four classical problems from the global optimization literature, a bifunctional catalytic
reactor problem, and the conformation problem of Lennard-Jones microclusters is demonstrated. Comparisons
with the Bayesian method of Boender and Rinooy K&fath. Program37, 59 (1987] and the simulated
annealing method of Dekkers and Aajtdath. Program50, 367 (1991)] are provided and, in each case, the
computational complexity of our method is shown to be smaller than that of these methods.
[S1063-651%97)13205-9

PACS numbds): 02.70.Lq, 02.60.Pn, 36.40c

I. INTRODUCTION from their multistart method is given by a generalized mul-
tinomial distribution[10]. Assuming that the number of op-

Since the advent in 1983 of simulated annealib@], a  tima of the function is equiprobable along the positive half of
Monte Carlomethod for stochastically tracing the conver- the integral real axis and that the relative sizes of the regions
gence of the Gibbsian distribution of a multimodal function of attraction are uniformly distributed, they derived posterior
to a Dirac § function over its global minimum, there has expected quantities using Bayesian estimation thé¢a8.
been a resurgence of interest in the global optimization offhey used the information generated by these quantities to
functions. Significant developments include genetic algoconstruct single-step sequential Bayesian stopping rules for
rithms|[3,4] based on heuristic principles of natural selectiontheir multistart global optimization method. Their method,
and the GOP methob,6], which is a deterministic method however, does not make full use of the information gleaned
of global optimization, for certain restricted classes of math-during the local searches to construct posterior notional
ematical programming problems, based on decompositioquantities that are more effective.

principles relating to the theory of dualify] of mathemati- In this paper we develop and analyze a Bayesian method
cal programs. Each of these methods possesses particufar global optimization. We illustrate the performance of our
advantages and disadvantages. method on classical multimodal test functions from the glo-

Bayesian methods for global optimization have been probal optimization literature; as well as on an optimal control
posed for some time noy8], and those relating to the sta- problem in the design of a bifunctional catalytic readtb4]
tistical structure of multiextremal probleni8—12] are not and a multimodal atomic-microcluster conformation problem
only interesting in their own right but could prove to be [15]. The latter problems are particularly complex in terms
computationally promising. In the Bayesian approach, onef the number of variables in the configuration space and the
expresses beliefs regarding some unknown relevant paramumber of optima supported by the objective functions. The
eters of the function in the form of a prior distribution. Ex- computational complexity of our method increases with the
perimental or computational information obtained about theotal number of local optima supported by the objective func-
function is then used to transform this prior distribution intotion, and is only weakly dependent on the dimensions of the
a posterior distribution through the utility &ayestheorem.  configuration space, in contrast to the complexity of simu-
The latter distribution is representative of the manner inlated annealing, which increases exponentially with the di-
which prior notions are affected by the outcome of the ex-mension of the configuration space of the objective function.
periments. Thereafter, a decision on whether to stop th&imulated annealing assumes and requires no initial knowl-
search can be taken based on a criterion that quantifies a losdge of the function. Similarly, when there is no initial
if the search is stopped prior to the location of all of theknowledge of the function, the Bayesian prior distribution is
optima. In[10] Boender and Rinooy Kan provided a rigorous taken as uniform. Accordingly, we compare the performance
framework for the development of optimal stopping rules forof our Bayesian method only with the most efficient of the
amultistart method for global optimization wherein the con- stopping rules of Boender and Rinooy KEI0] and with the
figuration space is repeatedly sampled at batches of unmost efficient of the algorithms thus far proposed for simu-
formly distributed points and local searches initiated theredated annealing2]. The measure of performance used is the
from. The probability of the aggregate of events resultingtotal number of function evaluations required to satisfy the
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stopping rule of each method and in each case the computa- o
tional complexity of our method is shown to be smaller than P(pg,ee e, IM)= E P(gq,e. e /M,N)@(N),
that of these methods. N=v 04

Il. PRELIMINARIES where ¢(N) is the prior probability that the functiorf (x)
o ) , hasN minima. The Bayesian stopping rule of our sequential-
The objective is to find the global optimurt of a real-  gearch method consists in terminating the search method

valued multimodal functiorf(x) defined over a compact set ¢qngists in terminating the search at that valudot which
S. The design of our scheme is based on a statistical analysife posterior probability

of a sequentiabearch method. In this sequential-search

method a point is drawn randomly from thaiform prob- PIN>v/py, g,y ;M)
ability distribution overS and a local search initiated from
this point thereafter. This sequence of drawing a uniformly

[

]

distributed point, and conducting a local search, is then reit- :N:ZV+1 PNy iz, iM)< 0= 15
erated until a suitable probabilistic guarantee is obtained of
having obtained all of the optima dfx). In order to con- (2.9

struct a formalism for obtaining such a guarantee, we per,
form a statistical analysis based on Bayes’ theorem.

We begin by assuming that the functib(x) can have a
specific set of minima of numbé¥, with associated basins PIN=viuy,pup,....u,;M)=1- 6= 17e (2.6
. . +e&

of attraction of volume fractior, , k=1,... N,

becomes acceptably small, or, equivalently,

becomes close to unit®(N>wv/uq,us,...,;4, ;M) is then

N sharp aboulN= v because
kE 6=1. (2.1)
=]
P(N<w/pq,p9,...,pt,;M)=0. 2.7
In practice,N and 6, k=1,... N are always unknown. Sup-  Under the circumstances denoted by E@sl)—(2.7), it is

pose that we conducM successive searches for local reasonable to employ Bayes' theorem to estimate
minima and their associated basins of attraction via OUP(N/u,u5,...,;u,;M). Since we have founflu,,...,u,},
sequential-search method. Suppose also that weifids-  but have no prior information abold other than that it
tinct basins. We are then faced with the question of whethegxceedsy, P(N/uq,u5,...,4, ;M) is, according to Bayes’

v equals or is less than the actual number of minifa theorem, simply proportional t8 (1 ,....un/M,N) itself
present inf(x). Since we now know the values 6fx) only

at a set of points of zero measure3nwe can answer that o Plua,..oun/MLN)
question only probabilistically. Given that we know we have ~ P(N/#1. 42,0, ;M) = S P(&1reinIMN)
at leastv minima, we can estimate the probability thdt (2.9

exceedsy, P(N>v/M). When P(N>w»/M) becomes ac-

ceptably small, i.e., less than some presef) at someM as

M is increased, the search is terminated. The more prior

information fed into the analysis, the more accurate(iN

>v/M) is estimated, and we do know more than just . . L .
) : : Equation (2.8) impels an explicit analysis of

More than one of théM starting points must be found to lie . . .

. : . . : P(uq,...,un/M,N) to obtain a reliable estimate of

in a single basin of attraction wheévi > v. Label the basins P(N/ ‘M)

found by an indexk, k=1,...,». We thus knowu,, the Kby eeealby N

number of starting points found to lie in each bakjn

Ill. APPROXIMATING ABOUT THE MONTE CARLO
ESTIMATE OF VOLUME FRACTIONS

A. Estimating the conditional probability P(uy,...,)y/M,N).

v Our development thus far parallels that[6]. Where we
> w=M. (2.2 differ is in the estimation ofP(uq,...,un/M,N). Let
k=1 P(64,...,04/N) be the probability that th& basins of at-

N o traction have the set & volume fractiong 4,,...,6y}. Each
Let P(uy,...,u,/M) be the probability of finding such a ¢ |ies in the open interva,1). If any of the, were 0 or 1,
set of M starting points inv distinct basins of attraction. Let tnere would beN—1 minima or 1 minimum, respectively,
P(u1,....un/M,N) be the conditional probability of finding  contradicting the prior notion that there ¢ minima. In
the number of starting pointgu,,...,.un} lying in their ap-  544ition thed, sum to unity as given by Eq2.1).
propriate basins afteM random searches on the function At this point in the argument, we deliberately ignore any
f(x) of which it is known only that it hadl=» minima such  njor knowledge of thes, which might be inferred from the
that local searches. For now, we suppose thdo be uniformly
distributed on the hyperplane given by E&.1) within the
u=0k=v+1v+2,..N. (2.3 open simplex¢, e (0,1), as Boender and Rinooy Kan have
done[10,12. We introduce such prior knowledge in Sec. V
ThenP(wq,...,4,,/M) can be expressed as below.
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The M successive starting points are independently and P(y,,.
randomly chosen. The conditional probability of obtaining

the set of starting point§uy,...,un}, given the values

{61,...,0\}, of the volume fractions, is the same as that of

the probability of sortingVl objects intoN boxes,
v aﬁk

P(p1,..in/ 01,00, MN)=M! T —. (3.0
k=1 Mkg:

The full probability P(w1,...,un/M,N) is then

P(I(Ll,...,,bLN/M,N)

:f "‘f P(Ml,...,MN/Gl,...,aN,M,N)

XP(0y,...,00/N)d0, ... d0y. (3.2

B. Evaluating P(l4,...,ln/M,N) for moderately large M

of {u} of order 10 or larger,
.,0n,M,N) has a single maximum for
N for N

For values

P(pq,. . pun/6q,..
N=v and a single sharp supremum {& ,...,
>vp; this is shown
{67 ,....68} is

(3.3

in both cases, Eq(3.3) implying that 6 =0 for k=v

+1,...N, when N>». The maximum value of
P(,LL]_,...,,LLN/H:L,...,GN,M,N) iS
v M )k
P*(iqy et 100,00, M,N) =M ] M
k=1 Mk:
(3.9

in both cases and is sharp jf,>1Vke[1,v] and M>v.
Exponentiating thed, in Eg. (3.1) and expanding thej,
dependence of the right-hand side abp#jt} yields

P(,U,l,...,,uN/Hl,...,GN,M,N)
1o M? | 2
= * —_— — —_— —
P()exp( 52 | O M] ., (35
for P(q,....,un/61,...,0n,M,N) near{6;} in the caseN

=v. For the caseN> v, the same expansion yields

P(,LL]_,...,/.LN/G:L,...,QN,M,N)

(3.6

In view of Egs.(2.1) and(2.2), Eq. (3.6) can be rewritten as

BAYESIAN METHOD FOR GLOBAL OPTIMIZATION

in Appendix A. The value of
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..,,LLN/01,...,0N,|\/I,N)
N v 2 2
1 M Mk)
=P*()exg —M O = > — | O
O F{ k:2u+l K 21;1 Mk( Y
3.7

From Eq.(3.6) or, especially, Eq(3.7), one sees explic-
ity that the maximum af 65} for N=v is replaced by a
supremum forN>w. The supremum is sharp around the
nonzerod; , providedM and all the nonzerg, individually
are large.

ForM>N, N>v, andu,> 1VKk, the 6 become the val-
ues obtained by the Monte Carlo measurement of the vol-
umes of the basins of attraction. In such a measurement, one

is concerned with the probability density
P(6¢,....00 11,...,an,M,N), which, according to Bayes’
rule, is proportional to P(uq,...,un/61,...,0n,M,N),

which is given by Eq(3.1). Equation(3.1) can be replaced
by Eg. (3.5 in the limit

P(Gl,...,f)N/,u,l,...,,uN,M,N)

(3.9

This limit forms the basis for the Monte Carlo measurement
of volumes of the basins of attraction. We note here #iiat
is the Diracé function.

The expression$3.5 and (3.6) can be used to evaluate
P(uq,...,un/M,N) via Eq. (3.2 whenM is large enough
so that the vicinity of 5 } within which each is valid domi-
nates the integrals in E¢3.2). The first step is to introduce
the §function 5(2[2':1@(— 1) as a factor into the integrand of
Eg. (3.2 so that the integration over thg,} can be ex-
tended to the entire open simpléxe (0,1). The next step is
to introduce the Fourier representation of théunction,

(B o) [ o] o

(3.9

and invert the order of the integration. The limits on the
integrations over the{6,} are extended to the domain
(—,») for k= v because of the presumption of the sharp-
ness of the integrand. The form resulting for the integrals in
Eq. (3.2 is then

P(/.Ll,...,,lLN/M,N)
L & 2mm\ R e [exp—in) — 1N
_p()zgl( MZ) fm[ —ir ]

xexp{—ﬁ{ﬁLiM}Z)dr, (3.10

which simplifies to
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P ey /M,N M\ 12
(-t IMLN) P(Ml,...,MN/M,N)sP*()exp(M/Z)(ﬁ)

1 v 2 1/2
=P EH(%) 1(  N-»?
k=1 ><exp<——{1+—] M)
2 2
o N—v 2sin#/2)| N v 1/2
_ 2
Xf_mexp( 2 T)[ v ] xkﬂl( M‘z‘k) . (3.12

1 The condition of equality in Eq(3.12 holds forN= .
Xex —W{T‘FiM}Z dr, (3.11

C. A stopping rule
and one may thus obtain the following upper bound for The probability that the functiorf(x) has exactly»

Py, /M,N), minima is given by
|
P(pq,ee i, /M, v) 1
P(vipy, po,. oty ;M)= = “1ts" (3.13
P(pq,eoopy, /M v)+ 21 P, opi /M, v+ )
T
As M —x, the rate of convergence of the quanttydefined IV. A MORE GENERAL ANALYSIS

by
The preceding analysis was based on an expansion about
o Py ifips oM, v+ @) the Mpnte C_arlo estimate of the volumes of the basin_s o_f
e= 2 , (3.149 attraction which approaches the true volumes of the basins in
w=1 Pl IM,v) the limit {uq,p0,...,un}—. Instead, a more general
analysis is possible. It is possible to compute
to zero provides a stopping criterion for this sequential-
search method. Because

Py, shps o/ M, v+ o) 0 o 1 j” .
vre < I P yoentny/M,N)= — exp(irt
P(ar..w M) R 127 g (M) (v MUN)= 50 | explin)
(3.15 v
(exp(—ir)—l)”"’ 1
x| ————— M =
we have —iT k=1 !
1
oc o o xf exp(i70)0*do dr.  (4.1)
e< D, exp — >t g (M| (3.16 0
w=1

It may be seen that=0.002 forM=10 with =1 domi-  explicitly by integrating over the entire space of the volume
nating, a result which holds triiedependenbf the dimen-  fractions, theN-dimensional unit simplex, again with no pre-
sion of the search space of the functibfx). Recall that the ~Sumption of prior knowledge of thgf,}. Equation(4.1) is
limits on the integrations over thgg,} in Eq. (3.2 were retained in the following form after simplification:

extended to the domain—(«,x~) for k<v because of the

presumption of the sharpness of the integrand. This could

lead to an overestimate efwhen the individualu, are not p IMN) = — * . N7
sufficiently large. Note however that the convergence quan- (p1--un/MLN) 27 ) o explir)ex o T
tifying parametere is now a function only ofM, the total

number of local searches conducted, but nowdhe total 2sin(7/2)\N"" ©o1 dM
number of discovered optima at any stage of the search pro- X(f) o1l dxek

cess and this could lead to an underestimate when the

total number of minimaN, of the function is very large. exp(x)—1
Clearly, a more general analysis is needed to incorporate the X T) dr. 4.2
latter into the stopping criterion. x=—ir
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It is then readily verified that

P(Mly--

<1 f“‘ i1 N—v M
\E _mex | 2 T !

.,/.,LN/M,N)

Tl dA [expx)—1 e (43
k=1 ! dXHK X i v 43
|
f exp(ir)exp(
P(i1ys oo siyr oM, v+ o) —

w
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The parametes quantifying convergence requires the com-
putation of

!Mv+w/M1V+w)
iy ML) ’

P(,(Ll,...
P(Mly"

which is now given by

P(pq,e /M, v)

and thereby

f:o EX[.XiT)Xg(iT)klzll dd::k (%) 4
e= . ,
f: exiti ) [ % %) dr
(4.9
where
1
X1 = i m2) =2 S ri2) =1 (4.6

Equations(4.4) and (4.5 require the specification ab, v,
M, and {u,} where Z;_;u =M, u =1, kv, and M

=yp. The integrals in Eq(4.5 can readily be evaluated by

the Gauss-Hermite quadratyrgs]. Equation(4.5 has been

j: exp(ir)kl:[

. 2sin(r/2)\ ¢ dMk [exp(x)—1
_|—7-)( = ) kljl x"k( " i 'dT
. X=—IT ’ (44)
d#k [expx)—1 d
7 dxHk X L 7

V. AN ANALYSIS BASED ON DIRECT COMPUTATION
OF VOLUME FRACTIONS

The analysis of the preceding section presupposes that we
do not have any knowledge of the volume fractions of the
basins of attraction derived from the process of local
searches on the topography of the function. If information
about the volume fractions of the discovered basins of attrac-
tion {6,} were to be generated, a sharper stopping criterion
than that due to Eq4.4) could be derived. Numerical esti-
mation of the actual volume fractio§®,} can only be pos-
sible up to a certain accuracy and is not easy. In fact the
problem of numerically computing the volume of a convex
body, of locating the global optimum of a multimodal func-
tion, and of determining the separatrices between the basins
of attraction for a given function all form an equivalence
class ofNP-completeproblems[17,18|.

Typically it will only be possible to obtain lower and
upper boundsgy"" and 6", on the volume fractions such
that{6, e[ 6", 6'*]}. Treating the{ 6,} as independent ran-

derived from the most general analysis of sequential randordom variables distributed on the hyperplaf2l) over the
local searches possible in the absence of prior informatiowpen simplexé, e (0,1) subject to these bounds, the joint
about thed, . Note that the convergence quantifying param-probability density for{ 6,} is given by

etere will now be a function ofy, the total number of local
optima discovered at any given stage of the search process,
as well asM, the total number of local searches conducted.

N
P(Gl,...,ﬁN)zkﬂl P(6)). (5.1)

TABLE |. Performance of the method based on the more general analysis.

Probability of

Number of missing
Number of Number of Number of function undiscovered
Test Problem variables minima searches  evaluations minima €Monte Carlo
Goldstein-Price 2 4 17 396 0106 2.4x10°°
Branin 2 3 16 376 181078 45x107°
Hartman-3 3 3 16 352 1010°° 45%x10°°
Hartman-6 6 3 12 253 1010°° 5.5x10°°
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Here for thev discovered basins of attraction one may as-Then, for theN—» undiscovered basins of attraction, the
sume a uniform probability density for the volume fractions, following most conservative uniform probability density
within the numerically computed estimates éf" and function may be adopted for the relative volume fractions:

max
0.,

1 ) 1
pk(ak):way Oe (0,60, VYke[lwv], pk(ﬁk)za—u, 0ke(0,0y) Vke[v+1N]
k k

(5.2 =0, 6e(6,1) Vke[v+1N]. (5.4)
and zero outside. Led,, be given by

Y Incorporating Eq(5.1)—(5.4) in the analysis of the quantify-
6 =1— gmin. 5.3 ing parametere, for the convergence of ousequential-
! 21 ! ®3 searchmethod, Eq(4.5 now reads

) v max Mk
f exp(i 1) xo(i 760y [1 fgk_ exp(—i76) ——=———d@ dr
—® k=1 9?'“ ak - Hk
o . (55

max MK
" %

f expin) [1 J", exp( — i 70) —mm— A0 dr
o0 k=1 0rkmn 0k —0k

We note that centered such that it just contains the maximum number of
feasible points{x;,X,,... X} generated during the local
_ i76, search. Its volume could serve as an estimate for the lower
xp(i760y)= T—exp—i70) (5.0 bound of the basin of attraction pertaining to the local mini-

mum x*. The volume of this ellipsoid is computed by con-
sidering an ellipsoid as an affine transformation of a hyper-
phere.

Denote by

All of the integrals over infinite domains can be evaluated
numerically using the Gauss-Hermite quadrature while thosg&
over finite domains can be evaluated analyticgllg] or nu-

merically using the Gauss-Chebyshev quadrature.
Q,={x|x"x<1} (5.9

Ellipsoidal lower bounds on the volume fractions
of the basins of attraction the hypersphere in dimensions. Its volume is given by the

. . well-known formula
Procedures for computing bounds on the volume fractions

of the basins with reasonable computational complexity can

only be heuristic in design. The problem of computing the V(Q,) = 7" (5.9
upper bound on the volume fraction of a basin is tractable n n+2\" '
only via a crude Monte Carlo estimation which itself would 2

require too many objective function evaluations. For the lack

of a better procedure we thus advocate setting the upp%rv dvt ite d the f la for th |
boundsé™ to 6,. However, it is fairly straightforward to ', 2'€ NOW ready to write down the formufa Tor the volume

estimate lower bounds of the basin volumes. of the ellipsoid given by Eq(5.7). It is given by

Let us assume that the configuration space is of dimension —

n. Leading to a local minimunx* will be a set of points V(E,)=V(Q,)|de(Q)|(f—f*)"?, (5.10

{X1,Xs,... Xy} obtained during the process of conducting lo-

cal searc_:hes f_rom a uniform!y distr_ibuted sample of poir_1ts iNyvhere the matrixQ is obtained from the relation

the configuration space. This set includes points considered

at each step in the location of theauchy point along a . o~ T

Cauchy arc of descent. Let the function take the values H*=QQ". (5.1

{f1.,f5,....fn} at the pointxy,X,,... Xy} Furthermore, let

its value and Hessian at the local minimuth be, respec- Alternatively, the volume of the convex hull encompassing

tively, denoted byf* andH* ~1. Let f denote the smallest, the points obtained during the local searches could have been

next to smallest or median of the values in the setused as an estimate of the lower bound of the basin volume

{f1,f5,...,fm}. Choose the ellipsoid fraction, but the method of ellipsoids is preferred over using
_ convex hulls because it delivers a greater lower bound on the

En={X|(x—=x*)TH* "{(x—x*)<f—f*} (5.7 basin volume fraction.
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TABLE Il. Performance of the method with ellipsoidal estimation of the lower bounds of volume

fractions.

Probability of

Number of missing
Number of Number of Number of function undiscovered
Test Problem variables minima searches evaluations minima £Monte Carlo
Goldstein-Price 2 4 17 396 01076 2.4x10°°
Branin 2 3 16 376 1R810°° 45x10°°
Hartman-3 3 3 13 278 10108 2.9x10°4
Hartman-6 6 3 12 253 10108 5.5x10°4

VI. THE PROBABILITY OF MISSING
THE GLOBAL MINIMUM

An important issue is the probability of missing the global

minimum. Let P(w/wq,...,u,,M) be the probability that

there arew undiscovered minima after minima have been

discovered inM local searches on the functidifx). Then

the conditional probability that one of the undiscovered
minima is the global minimum is given by/(v+ ). Let

P(missiuq,...
global minima having discovered minima in M searches.
Then we may write

. - w
P(MisSity,.... 00 M)= D> —— P(wlpy,... 10y, M)
o=1 WTV
iy
_wzl wtv
Py, iplps /M, v+ w) &
P(ug,....m,/IM,v)  1+e&°
(6.9

But, from Bayes’ theorenP(w/u4,...,;u,,M) is propor-

M, ,M) denote the probability of missing the

tional to P(uq,...

Mot o!M, v+ w) and we may write ge-

Here the functional form ofF(7;{mq,...x#,},{601,...,6,})
depends on the method of computing the volume fractions of
the basins of attraction. We thus have for the probability of
missing the global minimum

P(miss/,ul,...,,uV,M)=% J: exp(iT)S(7;v)

XF(ri{p1se ot {01,...,0,H)dT,
(6.3
whereS(r;v) is given by
e o [exp—in)—1\©
S(T'V)_wzl w+v —ir ) 6.4
It is straightforward to show that
y ooy
S —+—=1In(1 + — 6.
(rv>yy<y>w§w(5>

where y=[1—-exp(-i7)]/ir, and thus Eq.(6.3) may be
readily evaluated via the Gauss-Hermite quadrature. From
Egs.(6.1) and(3.13 it follows that

1

nerically

exq—ir)—l)‘”

—ir

1 (= .
P(w//.L]_,...,,u,V,M):E j_w eX[XIT)(

XF(ri{pe,- e}, {01,...,6,H)dT.

(6.2

and P(miss/uq,...

£
(1+v) (1+¢)

<P(Missly, ..., ,M)<

(1+8)<8
(6.6)

M, ,M)<e provides a less conservative

stopping rule tham itself. Accordingly, we shall use to set
the stopping rule in the following.

The development in this section can be used to assess the
likelihood of missing the global minimum provided the func-

TABLE lll. Performance of simulated annealing and the Bayesian method of Boender and Rinooy Kan.

Number of function

Number of function
evaluations required by

Number of  Number of  evaluations required by the method of Boender
Test Problem variables minima simulated annealing and Rinooy Kan
Goldstein-Price 2 4 563 721
Branin 2 3 505 683
Hartman-3 3 3 1459 633
Hartman-6 6 3 4648 318
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TABLE IV. The four best optimal solutions for the bifunctional catalyst design problem.

No. 1 No. 2 No. 3 No. 4

u(0) 0.6661 0.6651 0.6637 0.9
u(1) 0.6734 0.6721 0.90 0.6724
u(2) 0.6764 0.9 0.9 0.6755
u(3) 0.9 0.9 0.9 0.9

u(4) 0.9 0.9 0.9 0.9

u(s) 0.9 0.9 0.9 0.9

u(e) 0.9 0.9 0.9 0.9

u(7) 0.9 0.9 0.9 0.9

u(8) 0.9 0.9 0.9 0.9

u(9) 0.9 0.9 0.9 0.9
objective function 10.094210 3 10.0527% 103 9.9047x 103 9.8805< 103

tion does not exhibit the pathology of a global minimum |arger than 1.610 6, i.€., € generalOF Eellipsoidar< 10X 10°6.

with zero volume fraction such as the Diradunction. In our analysis{®) is given by
VIl. PERFORMANCE AND COMPARATIVE * 1
ANALYSIS ON TEST PROBLEMS (@)= Zl JO OP(O/w)P(w/py,....;t,,,M)dO,
In this section we present the performance of our sequen- (7.9

tial random search method on a variety of test problems. . : .
Comparisons with the Bayesian multistart method Ofwhere® s _the unk_n_own und|scc_)\_/ered vc_)lum_e fract|o_n and
Boender and Rinooy KafL0] and the simulated annealing P(O/w) is |ts_ condlmonal probability density gives@ undis-
method of Dekkers and Aarfg] are also presented. The test covered basm_s. S'”@? €(0,1) holds, Eq(7.1) can be re-
problems considered range in complexity from simple unplaced by the inequality
constrained optimization of algebraic functions, to the opti-

mal control of a catalytic reactor and to the conformation (0)=<
problem of an atomic microcluster. The yardstick for perfor-
mance of each method is the total number of function com-,

putations required during the execution of the method. ThéAccordmgly, choosing®)=0.005 is equivalent to choosing

AL . ; "€ generalOF Eelipsoidar 0-005 as a stopping criterion. Thus our
Iocal' minimizations were performed using a .conjuge}te test of the method of Boender and Rinooy Kan is much less
gradient method20]. In implementing the Bayesian multi-

start method of Boender and Rinooy KBID|, we used the stringent than that of our own methods.
stopping criterion that the expected volume fraction of the
undiscovered regions of attraction of the functi@) be no
larger than 0.005. Appendix B provides a sketch of the rel-
evant details of their method. The details of the simulated \We consider four standard test functidi2d —23 for glo-
annealing method implemented by us are identical to thospal optimization. The first problem is the Goldstein-Price
of the one due to Dekkers and Aaft]. Appendix C pro- problem. It is given by

vides a sketch of this annealing method. For the purposes of

differentiating among the various stopping criteria of our f(Xq,Xo)=[1+ (Xy+X,+1)%(19— 14x,+ 3x§—14x2

method we will denote byeyonte carlor  €generar  @Nd

Eelipsoidaly the stopping criteria due to the three different +6X1Xp+ 3x3) J[30+ (2%, — 3x5)?

e
1+¢°

(7.2

A. Four classical test problems from the global optimization
literature

analyses presented earlier. It was found that the stopping X (18— 32, + 12X+ 48, — 36x, X, + 27x2) |
criterion due toe yonte carlo iS UNreliable in general, and in ! ! 2 172 2
implementations of our method we imposed the stopping cri- (7.3

terion that the probability of undiscovered minima be no

TABLE V. Performance of the method based on the more general analysis.

Probability of

Number of missing
Number of Number of Number of  function undiscovered
Test Problem variables minima searches evaluations minima €Monte Carlo
Bifunctional Catalyst 10 25 117 2942 101078 0.0

Design
Problem
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TABLE VI. Performance of the method with ellipsoidal estimation of the lower bounds of volume
fractions.

Probability of

Number of missing
Number of Number of Number of  function undiscovered
Test Problem variables minima searches evaluations minima £Monte Carlo
Bifunctional catalyst 10 25 109 2691 1R10°°© 0.0

Design problem

and possesses four minima in the regien2<x;, X,<2} & one caro COrresponding to the stopping set of parameters
over which it is to be minimized. The global minimum oc- gbtained fore general@Nd & eipsoidal-
curs at (0;-1) and has the value of 3.

The second problem is the Branin problem. It is given by B. An optimal control problem in the design

of bifunctional catalysts

f(X1,X2) = We now consider a problefi4] in the conceptual design

of a bifunctional catalytic reactor for the conversion of me-
thylcyclopentane to benzene. It concerns the optimization
over a trajectory where the dynamics are described by a set
of coupled nonlinear ordinary differential equations. The
and possesses three minima all of which are global in thénction to be maximized represents the concentration of
region{ — 5<x,<10,0<x, <15} over which it is to be mini- benzene at the end of a tubular reactor and is described as

mized. follows:

The last two functions belong to the Hartman family of
problems and are denotedld8 andH6. The Hartman fam-
ily of functions is given in general by

I n
f(Xl,Xz,...,Xn): _izzl CieXF( _jgl aij(Xj_pij)z) .
(7.9

In the H3 test functionl =4 andn=3. In theH6 test func-
tion1=4 andn=6. The parameterg;}, {a;;}, and{p;;} for
each of these problems are given in Appendix D. Both the
three-dimensionaH3 function and the six-dimension&l6
function have four minima in the regiofx e R"|0=<X;

<1, |I<j=n} over which they have to be minimized. The

51 , 5 2
Xo— m X1+ ; X;—6

+10 co;+10 (7.4

Sy

minimize J(u(t))=—x4(t;),

subject to the constraints

d
axl(t):_klxl(t)v X;(t)=1.0,
axz(t):klxl(t)_(kz"' K3)Xo(t) +kaxs(t),  Xp(t)=0.0,

d
a X3(t):k2X2(t), X3(t):0.0,

location of theith local minimum is approximatelp;; and
its value is approximately-c; . One may also note that; is
proportional to thejth eigenvalue of the Hessian at thih
local minima.

Tables | and Il exhibit the performance of our method
with the stopping criteria, respectively, derived from the
more general analysis of Sec. IV and the analysis of Sec. V
with explicit incorporation of lower bounds into the formu-
lation using volumes of ellipsoids. Table Il depicts the per-
formance of the Bayesian method of Boender and Rinooy
Kan and the simulated annealing method of Dekkers and
Aarts. Also presented for each test problem is the value of

d
a X4(t):_k6X4(t)+k5X5(t), X4(t):00,
(7.6

d
— Xg(1) =KgXa(t) + KgXa(t) — (Kg+ K5+ Kg+Kg)Xs5(t)

dt

+Kk7Xg(t) + kX7 (1),  x5(1)=0.0,

d
at Xg(t) =KgXs(t) —KzXg(t), Xg(t)=0.0,

d
at X7(1) =KgXs(t) —kyoX7(1), X7(1)=0.0,

TABLE VII. Performance of simulated annealing and the Bayesian method of Boender and Rinooy Kan.

Number of function

Number of function
evaluations required by

Number of Number of evaluations required by the method of Boender
Test Problem variables minima simulated annealing and Rinooy Kan
Bifunctional catalyst 10 25 26471 3856

Design problem
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where TABLE VIII. Lennard-Jones atomic-microcluster problem.
4 1 Number of Number of Globally maximum
k= 21 cjlu)P~*, i=12,..,10, particles local optima binding energy
=
3 1 3.0
O=<t=<t;=2000 gm h/mol, 4 1 6.0
and 5 1 9.104
6 2 12.712
0.60<u(t)=<0.90. 7 4 16.505
8 8 19.821
Here x,(t) denotes moles of methylcyclopentane, the reac- 9 14 24.113
tant, whilex,(t) denotes moles of benzene, the desired prod- 10 50 28.422
uct. Additionally, we may note that 11 132 32.766
. 12 451 37.968
mass of hydrogenation compongnt
et ydrog pong 13 088 44.327
(total mass of catalypt ' 14 2497 47.845

_(total mass of catalyst up to a given section of the reactor
~ (molar flow rate of methylcyclopentane into the reagtdr

and

B (total mass of the catalyst in the reagtor
~ (molar flow rate of methylcyclopentane into the reagtor

ts

The coefficientgc;;} are given in Appendix E. To obtain the tion at the reactor outlet. This ten variable parameter estima-
solution of this optimal control problem we convert it to an tion problem possesses 25 local optifid], one of which is
optimal parameter estimation problem by dividing the timethe global optimum. The globally optimal solution and its
interval into ten equal sections each of length 200 gm h/mothree nearest suboptimal solutions are shown in Table IV.
and seek the ten piecewise constant controls Tables V and VI exhibit the performance of our method
[u(0),u(1),...,u(9)] that maximize the benzene concentra-with the stopping criteria, respectively, derived from the

TABLE IX. Performance of the method based on the more general analysis.

Number of Probability of
particles in the Number of missing
Lennard-Jones Number of Number of Number of function undiscovered
Cluster variables optima searches  evaluations minima € Monte Carlo
3 6 1 20 611 1.610°6 3.7x10°°
4 9 1 20 557 1.610°6 3.7x10°°
5 12 1 20 548 1.810°° 3.7x10°°
6 15 2 31 1031 18106 3.8x10°°
7 18 4 62 1871 181078 1.4x10° Y
8 21 8 114 2178 1810°© 0.0
9 24 14 197 5332 10108 0.0
10 27 50 702 21859 1:010°© 0.0
11 30 132 1839 42 524 10108 0.0
12 33 451 6339 196779 0106 0.0
13 36 988 13618 43046 1 Q08 0.0

14 39 2497 34901 1221611 a0 © 0.0
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TABLE X. Performance of the method with ellipsoidal estimation of the lower bounds of volume frac-

tions.
Number of Probability of
particles in the Number of missing
Lennard-Jones Number of Number of Number of function undiscovered
cluster variables optima searches evaluations minima € Monte Carlo
3 6 1 20 611 1.610°¢ 3.7x10°®
4 9 1 20 557 1.610°¢ 3.7x10°®
5 12 1 20 548 1.310°°© 3.7x10°®
6 15 2 31 1031 181076 3.8x10°°
7 18 4 59 1759 181078 9.6x10° Y
8 21 8 111 2116 1R010°° 0.0
9 24 14 190 5137 1010°© 0.0
10 27 50 689 21462 120106 0.0
11 30 132 1814 41928 1-010°° 0.0
12 33 451 6302 19567 7 01076 0.0
13 36 988 13584 429336 Q08 0.0
14 39 2497 34 828 12188 93 xa0 0.0

analysis about the more general analysis and the analyspotential minimum. The objective is then to find the global
with explicit incorporation of lower bounds into the formu- minimum of the potential energy hypersurface defined by
lation using volumes of ellipsoids. Table VIl depicts the per-

formance of the Bayesian method of Boender and Rinooy N _Nfl N
Kan and the simulated annealing method of Dekkers and Vi(r)= Zl jziZH via(Iri=ryl) (7.9
Aarts. Also presented for each test problem is the value of

&Monte Carlo COITEsponding to the stopping set of parametersubject to translational and rotational invariance of the clus-
for & generai@and ¢iipsoidal- ter. This problem hasi8—6 degrees of freedom. Hoare and
Mclnnes[15] have shown that the number of local minima

C. An atomic-microcluster conformation problem of the potential energy surface of a Lennard-Jones cluster
We consider the restricted problem of describing theb_ecomes large growing faster than linearlyNn The Baye- .

ground state of a classicdll-particle system interacting stan met_hod of Boendgr and Rinooy Kan hag been .Cof‘s'd'
through the Lennard-Jones pair potential. The potential igred earlier for the location of the globally maximum binding

given conventionally in reduced units energy of such clustef24]. We consider the performance of
our method on twelve clusters ranging from 3 to 14 patrticles.
v y(r)=r"12-2r 8 (7.7)  Table VIII shows the global minimum values for each of

these clusters.
where v ;(r) is the potential in units of the well depth, and  Tables IX and X exhibit the performance of our method
r is the interparticle distance in units of the distance at thewith the stopping criteria, respectively, derived from the

TABLE XI. Performance of simulated annealing and the Bayesian method of Boender and Rinooy Kan.

Number of function

Number of particles in Number of function  evaluations required by
the Lennard-Jones Number of Number of evaluations required by the method of Boender
cluster variables optima simulated annealing and Rinooy Kan
3 6 1 19 855 651
4 9 1 28 247 588
5 12 1 33261 546
6 15 2 47 459 1188
7 18 4 61 073 1921
8 21 8 69 719 2299
9 24 14 84 536 5564
10 27 50 91 329 22 268
11 30 132 10354 4 43 334
12 33 451 301143 198219
13 36 988 587261 437026

14 39 2497 70 149 36 12362 35
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TABLE XIl. Parameters for théd3 function. TABLE XIV. Parameters for théd6 function(continued.

i aj1 ) a3 Ci Pi1 Pi2 Pis i Pi1 Pi2 Pis Pisa Pis Pies
3 10 30 1 0.3689 0.1170 0.2673 0.1312 0.1696 0.5569 0.0124 0.8383 0.5886
0.1 10 35 1.2 0.469 9 0.4387 0.7470 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

10 30 3 0.1091 0.8732 0.5547 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.1 10 35 3.2 0.038 15 0.5743 0.8828 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

A WN PR
w
A WN P

more general analysis and the analysis with explicit incorpotion evaluations required by the latter and that required by
ration of lower bounds into the formulation using volumes ofthe former.
ellipsoids, respectively. Table XI depicts the performance of With respect to the Bayesian method described in this
the Bayesian method of Boender and Rinooy Kan and th@aper, two stopping criteria have been considered: that due
simulated annealing method of Dekkers and Aarts. Also preto the general analysis of Sec. IV and that due to the ellip-
sented for each test problem is the valuesgf e catocor-  Soidal estimation of basin volume fractions described in Sec.
responding to the stopping set of parametersefpegand V- AS seen in Tables I-Ill for the four classical problems
from the global optimization literature, both stopping criteria
require an almost equal number of function evaluations for
termination within an allowance of fluctuations in the num-
VIIl. CONCLUSIONS: FUTURE WORK ber of local searches_ requ!red. However, Wh(_an one examines
the results of the bifunctional catalyst design problem in
Our Bayesian sequential random search method has beqmbles IV-VII and of the conformation problem of the
shown to be a reliable tool for locating the global minimum Lennard-Jones clusters in Tables VIII-XI it is evident that
of multimodal functions of continuous variables. Within the knowledge of the basin volume fractions, although heuristic,
framework of the general analysis and the ellipsoidal estimaserves to diminish the number of function evaluations re-
tion of basin lower bounds its performance compares weltjuired for the termination of the Bayesian algorithm. Thus,
with those of the Bayesian method of Boender and Rinooyrom the results of the various computations, it cannot be
Kan [10] and the simulated annealing method of Dekkersoveremphasized that more accurate, rapid estimate of lower
and Aarts[2]. and upper bounds on basin volume fractions are required to
In studying the results of the computations described irobtain a sharper stopping criterion for the method.
Sec. VII, certain definitive patterns can be identified. Due to  Finally, we note that the Monte Carlo stopping criterion
the combinatorial nature of the transitions in the searchof Eq.(3.16 is clearly inadequate. It underestimates the total
space, simulated annealing possesses a computational comtmber of undiscovered minima when the total number of
plexity which is exponential in the dimensions of the searchminima supported by the function is very large and when the
space independent of the total number of minima supportegbtal number of minima supported by the function is small, it
by the objective function. On the other hand, both the Bayeoverestimates the number of undiscovered minima of the
sian method described in Sec. IlI-VI, and the Bayesiarfunction if the visitation numbers to the individual minima
method of Boender and Rinooy Kan possess computationalre not sufficiently large.
complexities that are strong functions of the total number of
minima supported by the objective function while growing
algebraically, and hence weakly, as a function of the dimen- ACKNOWLEDGMENTS
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bal minimum with sufficient assurance. Furthermore, the use
of identical stopping criteria for both methods would only

serve to amplify the difference between the number of func- APPENDIX A: EVALUATING THE SUPREMUM OF

P(Uy,....un704,...,0y ,M,N)

€ ellipsoidal-

TABLE Xill. Parameters for thed6 function. Consider the multinomial distribution given by

| a1 aj a3 ajy a5 dis Ci
P(,U,l,...,,u,Nlﬂl,...,HN,M,N)
1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 12 ok M! .
3 3 35 17 10 17 8 3 =m]] I i & > i In 6,
k=1 Mk k=1Mk: k=1
4 17 8 0.05 10 01 14 32

(A1)
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TABLE XV. Coefficients for the rate constants.

i Ci1 Ciz Ciz Cig
1 0.002 918 487 —0.008 045 787 0.006 749 947 —0.001 416 647
2 9.509 97 —35.009 94 42.833 29 —17.3333
3 26.820 93 —95.560 79 113.0398 —44.299 97
4 208.724 1 —719.805 2 827.746 6 —316.6655
5 1.350 005 —6.850 027 12.166 71 —6.666 689
6 0.0192 1995 —0.079 453 20 0.110566 6 —0.050 333 33
7 0.1323596 —0.469 6255 0.553932 3 —0.216 666 4
8 7.339 981 —25.273 28 29.933 29 —11.999 99
9 —0.395053 4 1.679 353 —1.777 829 0.497 498 7
10 —0.000 025 046 65 0.010 058 54 —0.019 866 96 0.009 833470

where 0= 6,<1, VK. Introducing a Lagrange multipliex,
this supremum is the sumpremum of

N

(weIN G=N6)—N > 6, (A2)
k=v+1

v
>
k=1

which has negative curvature with respecté{g 1<sk<v.
Therefore(A2) is a maximum with respect t6,, 1<k=v
when

_oox Mk
0= 0 N

<

=

1sk=v,

(A3)

and is a supremum whef, =0, v+1<k<N because\
=M is positive.

APPENDIX B: THE BAYESIAN METHOD
OF BOENDER AND RINOOY KAN

In Boender and Rinooy Kan'swultistart method for glo-
bal optimization[10] the configuration space is repeatedly

cri
sampled at batches of uniformly distributed points and Iocaio

APPENDIX C: THE SIMULATED ANNEALING METHOD
OF DEKKERS AND AARTS

The algorithm of Dekkers and Aarts, as applied to a mul-
tivariate functionf(x), xe SCR", is stated in text below; we
may note here that the parameteis the control parameter
notionally equivalent to temperature in statistical physics and
L is the length of the Markov chain which is fixed for a given
instance of the problem.

In the simulated annealing method, an initial choice of the
control parametell and of a configuration poirt is taken.
ThereuponL steps of the following Markovian process are
undergone: A new poiny in the configuration space is
sampled; a transitior«<Yy is made if the objective function
f(.) satisfies the relatiorf(y)=<f(x) or if the functional
exp{—[f(y)—f(X))/T} is greater than a random number drawn
from a uniform distribution over the intervid,1). After un-
dergoing this Markovian process, a criterion is tested for
lowering the cooling parametér. If it is necessary to cool
the system further, the Markovian process is reiterated with a
new value of the cooling parameter. If it is determined that
there is no further need to cool, the global optimum has been
located.

For the cooling schedule we used the parameters pre-
bed by Dekkers and Aarts[2]: y,=0.9, d
1,e,=1.0x10 4, andL,=10. Initially, the temperature

searches initiated therefrom. The probability of the aggregatfy, gt pe sufficiently large such that almost all transitions are

of events resulting from their multistart method is given by a

generalized multinomial distribution. Given a uniform prior
distribution of local minima and a generalized multinomial
distribution of the outcomeN,w}={N;,N,,...,N,}, the

posterior expected value of the total relative volume of ob-

served regions of attraction, denoted @yis given by

(N=w—=1)(N+w)

N(N=1) N=w+ 2.

(B1)

E(Q/{N,w})=

Here w is the total number of local minima discovered in
N local searches anfN;,1<i<w} the frequency of visits to

accepted. This is achieved by generating a number of trials,
sayty, and requiring that the initial acceptance raiig be
close to unity, where the acceptance ratio is defined as the
ratio of the number of accepted transitions to the number of
proposed transitions. The initial value of the temperature is
computed by the following expression:

)l

wheret_ andt, , respectively, denote the number of trials
with [Af,,=f(y)—f(x)]<0 andAf,,>0. (Af*) denotes
the average of those values &f, for which Af,,>0. The

t

teyot (1— 1yt €D

T0=(Af+>(

the minima. The proof of this statement can be referred to "iemperature is decreased according to

Boender and Rinooy Kaf0]. Following Maier[24], we set
the stopping criterion for the Bayesian method of Boende
and Rinooy Kan in our implementations such that
E(Q/{N,w})=0.995.

;
In(1+d)

Bo(T) (€2

T<—T( 1+T
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wherea(T) denotes the standard deviation of the values of y=LS(x), if w>0.75
the objective function of all the points of the Markov chain at )
temperaturel. The constant is called the distance param- =U(S), if w=0.75, (e

eter and determines the rate of decrement of the temperaturtghere w is a random number uniformly distributed in

The simulated annealing algorithm is terminated when [0,). LS(x) is a local search procedure that generates a
point y, not necessarily a local minimum, along a descent

d T direction ofx andU(S) is a point drawn from the uniform
o7 (fs(xT) (Fx:To)) <&s. (€3 distribution over the compact s&t

APPENDIX D: PARAMETERS FOR THE HARTMAN

Here(f(x;Ty)) is the mean value of the objective function at FAMILY OF FUNCTIONS

the points found in the initial Markov chaigfs(x;T)) is the

smoothed value off (x;T)) over a number of chains in order ~ Table XII gives the parameters for ti#3 function while
to reduce the fluctuations ¢f(x;T)), ande, is the stopping Tables XlII and XIV give the parameters for thé6 func-
parameter. The length of the Markov chain is chosen to betion.

L=Lo dim(S)=Lon (C4) APPENDIX E: PARAMETERS FOR THE BIFUNCTIONAL
CATALYST PROBLEM
and a new pointy is generated from a current poirtac- The parameters for the rate constants for the bifunctional
cording to catalyst design problem are given in Table XV.
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