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Bayesian method for global optimization
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We introduce a Bayesian approach for obtaining the global optimum of multimodal functions. The set of
observed minima of a multimodal function is viewed as a sample from a multinomial distribution, whose cells
correspond to the basins of attraction of the local optima. We then derive the posterior distribution of the
number of local optima. This posterior information is obtained from a Bayesian analysis and is used to
construct a stopping criterion for asequentialrandom search method which finds the optimal tradeoff between
reliability and computational effort. The computational complexity of this global optimization method is a
strong function of the total number of local optima and a weak function of the dimensions of the configuration
space. Application to four classical problems from the global optimization literature, a bifunctional catalytic
reactor problem, and the conformation problem of Lennard-Jones microclusters is demonstrated. Comparisons
with the Bayesian method of Boender and Rinooy Kan@Math. Program.37, 59 ~1987!# and the simulated
annealing method of Dekkers and Aarts@Math. Program.50, 367 ~1991!# are provided and, in each case, the
computational complexity of our method is shown to be smaller than that of these methods.
@S1063-651X~97!13205-6#

PACS number~s!: 02.70.Lq, 02.60.Pn, 36.40.2c
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I. INTRODUCTION

Since the advent in 1983 of simulated annealing@1,2#, a
Monte Carlomethod for stochastically tracing the conve
gence of the Gibbsian distribution of a multimodal functi
to a Dirac d function over its global minimum, there ha
been a resurgence of interest in the global optimization
functions. Significant developments include genetic al
rithms @3,4# based on heuristic principles of natural selecti
and the GOP method@5,6#, which is a deterministic method
of global optimization, for certain restricted classes of ma
ematical programming problems, based on decomposi
principles relating to the theory of duality@7# of mathemati-
cal programs. Each of these methods possesses parti
advantages and disadvantages.

Bayesian methods for global optimization have been p
posed for some time now@8#, and those relating to the sta
tistical structure of multiextremal problems@9–12# are not
only interesting in their own right but could prove to b
computationally promising. In the Bayesian approach, o
expresses beliefs regarding some unknown relevant pa
eters of the function in the form of a prior distribution. E
perimental or computational information obtained about
function is then used to transform this prior distribution in
a posterior distribution through the utility ofBayes’ theorem.
The latter distribution is representative of the manner
which prior notions are affected by the outcome of the
periments. Thereafter, a decision on whether to stop
search can be taken based on a criterion that quantifies a
if the search is stopped prior to the location of all of t
optima. In@10# Boender and Rinooy Kan provided a rigoro
framework for the development of optimal stopping rules
amultistartmethod for global optimization wherein the co
figuration space is repeatedly sampled at batches of
formly distributed points and local searches initiated the
from. The probability of the aggregate of events result
551063-651X/97/55~5!/6219~14!/$10.00
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from their multistart method is given by a generalized m
tinomial distribution@10#. Assuming that the number of op
tima of the function is equiprobable along the positive half
the integral real axis and that the relative sizes of the regi
of attraction are uniformly distributed, they derived poster
expected quantities using Bayesian estimation theory@13#.
They used the information generated by these quantitie
construct single-step sequential Bayesian stopping rules
their multistart global optimization method. Their metho
however, does not make full use of the information glean
during the local searches to construct posterior notio
quantities that are more effective.

In this paper we develop and analyze a Bayesian met
for global optimization. We illustrate the performance of o
method on classical multimodal test functions from the g
bal optimization literature; as well as on an optimal cont
problem in the design of a bifunctional catalytic reactor@14#
and a multimodal atomic-microcluster conformation proble
@15#. The latter problems are particularly complex in term
of the number of variables in the configuration space and
number of optima supported by the objective functions. T
computational complexity of our method increases with
total number of local optima supported by the objective fun
tion, and is only weakly dependent on the dimensions of
configuration space, in contrast to the complexity of sim
lated annealing, which increases exponentially with the
mension of the configuration space of the objective functi
Simulated annealing assumes and requires no initial kno
edge of the function. Similarly, when there is no initi
knowledge of the function, the Bayesian prior distribution
taken as uniform. Accordingly, we compare the performan
of our Bayesian method only with the most efficient of t
stopping rules of Boender and Rinooy Kan@10# and with the
most efficient of the algorithms thus far proposed for sim
lated annealing@2#. The measure of performance used is t
total number of function evaluations required to satisfy t
6219 © 1997 The American Physical Society
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6220 55VENKATESH, COHEN, CARR, AND DEAN
stopping rule of each method and in each case the comp
tional complexity of our method is shown to be smaller th
that of these methods.

II. PRELIMINARIES

The objective is to find the global optimumx* of a real-
valued multimodal functionf (x) defined over a compact se
S. The design of our scheme is based on a statistical ana
of a sequential-search method. In this sequential-searc
method a point is drawn randomly from theuniform prob-
ability distribution overS and a local search initiated from
this point thereafter. This sequence of drawing a uniform
distributed point, and conducting a local search, is then r
erated until a suitable probabilistic guarantee is obtained
having obtained all of the optima off (x). In order to con-
struct a formalism for obtaining such a guarantee, we p
form a statistical analysis based on Bayes’ theorem.

We begin by assuming that the functionf (x) can have a
specific set of minima of numberN, with associated basin
of attraction of volume fractionuk , k51,...,N,

(
k51

N

uk51. ~2.1!

In practice,N anduk , k51,...,N are always unknown. Sup
pose that we conductM successive searches for loc
minima and their associated basins of attraction via
sequential-search method. Suppose also that we findn dis-
tinct basins. We are then faced with the question of whet
n equals or is less than the actual number of minimaN
present inf (x). Since we now know the values off (x) only
at a set of points of zero measure inS, we can answer tha
question only probabilistically. Given that we know we ha
at leastn minima, we can estimate the probability thatN
exceedsn, P(N.n/M ). When P(N.n/M ) becomes ac-
ceptably small, i.e., less than some preset«.0 at someM as
M is increased, the search is terminated. The more p
information fed into the analysis, the more accuratelyP(N
.n/M ) is estimated, and we do know more than justn.
More than one of theM starting points must be found to li
in a single basin of attraction whenM.n. Label the basins
found by an indexk, k51,...,n. We thus knowmk , the
number of starting points found to lie in each basink,

(
k51

n

mk5M . ~2.2!

Let P(m1 ,...,mn /M ) be the probability of finding such a
set ofM starting points inn distinct basins of attraction. Le
P(m1 ,...,mN /M ,N) be the conditional probability of finding
the number of starting points$m1 ,...,mN% lying in their ap-
propriate basins afterM random searches on the functio
f (x) of which it is known only that it hasN>n minima such
that

mk50,k5n11,n12,...,N. ~2.3!

ThenP(m1 ,...,mn /M ) can be expressed as
ta-

sis

y
t-
of

r-

r

er

or

P~m1 ,...,mn /M !5 (
N5n

`

P~m1 ,...,mN /M ,N!w~N!,

~2.4!

wherew(N) is the prior probability that the functionf (x)
hasN minima. The Bayesian stopping rule of our sequenti
search method consists in terminating the search me
consists in terminating the search at that value ofM at which
theposteriorprobability

P~N.n/m1 ,m2 ,...,mn ;M !

5 (
N5n11

`

P~N/m1 ,m2 ,...,mn ;M !<d5
«

11«

~2.5!

becomes acceptably small, or, equivalently,

P~N5n/m1 ,m2 ,...,mn ;M !>12d5
1

11«
~2.6!

becomes close to unity.P(N.n/m1 ,m2 ,...,mn ;M ) is then
sharp aboutN5n because

P~N,n/m1 ,m2 ,...,mn ;M !50. ~2.7!

Under the circumstances denoted by Eqs.~2.1!–~2.7!, it is
reasonable to employ Bayes’ theorem to estim
P(N/m1 ,m2 ,...,mn ;M ). Since we have found$m1 ,...,mn%,
but have no prior information aboutN other than that it
exceedsn, P(N/m1 ,m2 ,...,mn ;M ) is, according to Bayes’
theorem, simply proportional toP(m1 ,...,mN /M ,N) itself

P~N/m1 ,m2 ,...,mn ;M !5
P~m1 ,...,mN /M ,N!

(N5n
` P~m1 ,...,mN /M ,N!

.

~2.8!

III. APPROXIMATING ABOUT THE MONTE CARLO
ESTIMATE OF VOLUME FRACTIONS

Equation ~2.8! impels an explicit analysis o
P(m1 ,...,mN /M ,N) to obtain a reliable estimate o
P(N/m1 ,m2 ,...,mn ;M ).

A. Estimating the conditional probability P„µ1 ,...,µN /M ,N….

Our development thus far parallels that of@9#. Where we
differ is in the estimation ofP(m1 ,...,mN /M ,N). Let
P(u1 ,...,uN /N) be the probability that theN basins of at-
traction have the set ofN volume fractions$u1 ,...,uN%. Each
uk lies in the open interval~0,1!. If any of theuk were 0 or 1,
there would beN21 minima or 1 minimum, respectively
contradicting the prior notion that there beN minima. In
addition theuk sum to unity as given by Eq.~2.1!.

At this point in the argument, we deliberately ignore a
prior knowledge of theuk which might be inferred from the
local searches. For now, we suppose theuk to be uniformly
distributed on the hyperplane given by Eq.~2.1! within the
open simplexukP(0,1), as Boender and Rinooy Kan hav
done@10,12#. We introduce such prior knowledge in Sec.
below.
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55 6221BAYESIAN METHOD FOR GLOBAL OPTIMIZATION
The M successive starting points are independently
randomly chosen. The conditional probability of obtaini
the set of starting points$m1 ,...,mN%, given the values
$u1 ,...,uN%, of the volume fractions, is the same as that
the probability of sortingM objects intoN boxes,

P~m1 ,...,mN /u1 ,...,uN ,M ,N!5M !)
k51

n uk
mk

mk!
. ~3.1!

The full probabilityP(m1 ,...,mN /M ,N) is then

P~m1 ,...,mN /M ,N!

5E •••E P~m1 ,...,mN /u1 ,...,uN ,M ,N!

3P~u1 ,...,uN /N!du1 ,...,duN . ~3.2!

B. Evaluating P„µ1 ,...,µN /M ,N… for moderately large M

For values of $mk% of order 10 or larger,
P(m1 ,...,mN /u1 ,...,uN ,M ,N) has a single maximum fo
N5n and a single sharp supremum at$u1* ,...,uN* % for N
.n; this is shown in Appendix A. The value o
$u1* ,...,uN* % is

uk*5
mk

M
, k51,...,N ~3.3!

in both cases, Eq.~3.3! implying that uk*50 for k5n
11,...,N, when N.n. The maximum value of
P(m1 ,...,mN /u1 ,...,uN ,M ,N) is

P* ~m1 ,...,mN /u1 ,...,uN ,M ,N!5M !)
k51

n
~mk /M !mk

mk!
~3.4!

in both cases and is sharp ifmk@1;kP@1,n# andM@n.
Exponentiating theuk in Eq. ~3.1! and expanding theuk
dependence of the right-hand side about$uk* % yields

P~m1 ,...,mN /u1 ,...,uN ,M ,N!

5P* ~ !expS 2
1

2 (
k51

n
M2

mk
H uk2

mk

M J 2D , ~3.5!

for P(m1 ,...,mN /u1 ,...,uN ,M ,N) near$uk* % in the caseN
5n. For the case,N.n, the same expansion yields

P~m1 ,...,mN /u1 ,...,uN ,M ,N!

5P* ~ !expFM(
k51

n S uk2
mk

M D
2
1

2 (
k51

n
M2

mk
S uk2

mk

M D 2G . ~3.6!

In view of Eqs.~2.1! and~2.2!, Eq. ~3.6! can be rewritten as
d

f

P~m1 ,...,mN /u1 ,...,uN ,M ,N!

5P* ~ !expF2M (
k5n11

N

uk2
1

2 (
k51

n
M2

mk
S uk2

mk

M D 2G .
~3.7!

From Eq.~3.6! or, especially, Eq.~3.7!, one sees explic-
itly that the maximum at$uk* % for N5n is replaced by a
supremum forN.n. The supremum is sharp around th
nonzerouk* , providedM and all the nonzeromk individually
are large.

ForM@N, N.n, andmk@1;k, theuk* become the val-
ues obtained by the Monte Carlo measurement of the
umes of the basins of attraction. In such a measurement,
is concerned with the probability densit
P(u1 ,...,uN /m1 ,...,mN ,M ,N), which, according to Bayes
rule, is proportional to P(m1 ,...,mN /u1 ,...,uN ,M ,N),
which is given by Eq.~3.1!. Equation~3.1! can be replaced
by Eq. ~3.5! in the limit

lim
$m1 ,...,mN%→`

P~u1 ,...,uN /m1 ,...,mN ,M ,N!

5)
k51

N

dS uk2
mk

M D . ~3.8!

This limit forms the basis for the Monte Carlo measurem
of volumes of the basins of attraction. We note here thatd~.!
is the Diracd function.

The expressions~3.5! and ~3.6! can be used to evaluat
P(m1 ,...,mN /M ,N) via Eq. ~3.2! whenM is large enough
so that the vicinity of$uk* % within which each is valid domi-
nates the integrals in Eq.~3.2!. The first step is to introduce
thed functiond((k51

N uk21) as a factor into the integrand o
Eq. ~3.2! so that the integration over the$uk% can be ex-
tended to the entire open simplexukP(0,1). The next step is
to introduce the Fourier representation of thed function,

dS 12 (
k51

N

ukD 5
1

2p E
2`

`

expS i tH 12 (
k51

N

ukJ D dt,

~3.9!

and invert the order of the integration. The limits on t
integrations over the$uk% are extended to the domai
(2`,`) for k<n because of the presumption of the sha
ness of the integrand. The form resulting for the integrals
Eq. ~3.2! is then

P~m1 ,...,mN /M ,N!

5P* ~ !
1

2p (
k51

n S 2pmk

M2 D 1/2E
2`

` H exp~2 i t!21

2 i t J N2n

3expS 2
1

2M
$t1 iM %2Ddt, ~3.10!

which simplifies to
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P~m1 ,...,mN /M ,N!

5P* ~ !
1

2p )
k51

n S 2pmk

M2 D 1/2

3E
2`

`

expS 2 i
N2n

2
t D H 2 sin~t/2!

t J N2n

3expS 2
1

2M
$t1 iM %2Ddt, ~3.11!

and one may thus obtain the following upper bound
P(m1 ,...,mN /M ,N),
ial

u

a

pr

.
t

r

P(m1 ,...,mN /M ,N)<P* ~ !exp~M /2!S M2p D 1/2
3expS 2

1

2 H 11
N2n

2 J 2M D
3)

k51

n S 2pmk

M2 D 1/2. ~3.12!

The condition of equality in Eq.~3.12! holds forN5n.

C. A stopping rule

The probability that the functionf (x) has exactlyn
minima is given by
P~n/m1 ,m2 ,...,mn ;M !5
P~m1 ,...,mn /M ,n!

P~m1 ,...,mn /M ,n!1 (
v51

`

P~m1 ,...,mn1v /M ,n1v!

5
1

11«
. ~3.13!
bout
of
s in
l

e
-

AsM→`, the rate of convergence of the quantity«, defined
by

«5 (
v51

`
P~m1 ,...,mn1v /M ,n1v!

P~m1 ,...,mn /M ,n!
, ~3.14!

to zero provides a stopping criterion for this sequent
search method. Because

P~m1 ,...,mn1v /M ,n1v!

P~m1 ,...,mn /M ,n!
<expS 2H v

2
1

v2

8 JM D ,
~3.15!

we have

«< (
v51

`

expS 2H v

2
1

v2

8 JM D . ~3.16!

It may be seen that«>0.002 forM>10 with v51 domi-
nating, a result which holds trueindependentof the dimen-
sion of the search space of the functionf (x). Recall that the
limits on the integrations over the$uk% in Eq. ~3.2! were
extended to the domain (2`,`) for k<n because of the
presumption of the sharpness of the integrand. This co
lead to an overestimate of« when the individualmk are not
sufficiently large. Note however that the convergence qu
tifying parameter« is now a function only ofM , the total
number of local searches conducted, but not ofn the total
number of discovered optima at any stage of the search
cess and this could lead to an underestimate of« when the
total number of minimaN, of the function is very large
Clearly, a more general analysis is needed to incorporate
latter into the stopping criterion.
-

ld

n-

o-

he

IV. A MORE GENERAL ANALYSIS

The preceding analysis was based on an expansion a
the Monte Carlo estimate of the volumes of the basins
attraction which approaches the true volumes of the basin
the limit $m1 ,m2 ,...,mN%→`. Instead, a more genera
analysis is possible. It is possible to compute

P~m1 ,...,mN /M ,N!5
1

2p E
2`

`

exp~ i t!

3S exp~2 i t!21

2 i t D N2n

M !)
k51

n
1

mk!

3E
0

1

exp~ i tu!umkdu dt. ~4.1!

explicitly by integrating over the entire space of the volum
fractions, theN-dimensional unit simplex, again with no pre
sumption of prior knowledge of the$uk%. Equation~4.1! is
retained in the following form after simplification:

P~m1 ,...,mN /M ,N!5
1

2p E
2`

`

exp~ i t!expS 2 i
N2n

2
t D

3S 2 sin~t/2!

t D N2n

M !)
k51

n
1

mk!

dmk

dxmk

3S exp~x!21

x DU
x52 i t

dt. ~4.2!
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It is then readily verified that

P~m1 ,...,mN /M ,N!

<
1

2p E
2`

`

expS i H 12
N2n

2 J t DM !

3)
k51

n
1

mk!

dmk

dxmk S exp~x!21

x DU
x52 i t

dt. ~4.3!
y

o
tio
m
l
e
ed
The parameter« quantifying convergence requires the com
putation of

P~m1 ,...,mn1v /M ,n1v!

P~m1 ,...,mn /M ,n!
,

which is now given by
P~m1 ,...,mn1v /M ,n1v!

P~m1 ,...,mn /M ,n!
5

E
2`

`

exp~ i t!expS 2 i
v

2
t D S 2 sin~t/2!

t D v

)
k51

n
dmk

dxmk S exp~x!21

x DU
x52 i t

dt

E
2`

`

exp~ i t!)
k51

n
dmk

dxmk S exp~x!21

x DU
x52 i t

dt

, ~4.4!
t we
he
cal
on
rac-
ion
-

the
ex
c-
sins
e

-

nt
and thereby

«5

E
2`

`

exp~ i t!xg~ i t!)
k51

n
dmk

dxmk S exp~x!21

x DU
x52 i t

dt

E
2`

`

exp~ i t!)
k51

n
dmk

dxmk S exp~x!21

x DU
x52 i t

dt

,

~4.5!

where

xg~ i t!5
1

exp~ i t/2!22 sin~t/2!/t21
. ~4.6!

Equations~4.4! and ~4.5! require the specification ofv, n,
M , and $mk% where (k51

n mk5M , mk>1, k<n, and M
>n. The integrals in Eq.~4.5! can readily be evaluated b
the Gauss-Hermite quadrature@16#. Equation~4.5! has been
derived from the most general analysis of sequential rand
local searches possible in the absence of prior informa
about theuk . Note that the convergence quantifying para
eter« will now be a function ofn, the total number of loca
optima discovered at any given stage of the search proc
as well asM , the total number of local searches conduct
m
n
-

ss,
.

V. AN ANALYSIS BASED ON DIRECT COMPUTATION
OF VOLUME FRACTIONS

The analysis of the preceding section presupposes tha
do not have any knowledge of the volume fractions of t
basins of attraction derived from the process of lo
searches on the topography of the function. If informati
about the volume fractions of the discovered basins of att
tion $uk% were to be generated, a sharper stopping criter
than that due to Eq.~4.4! could be derived. Numerical esti
mation of the actual volume fractions$uk% can only be pos-
sible up to a certain accuracy and is not easy. In fact
problem of numerically computing the volume of a conv
body, of locating the global optimum of a multimodal fun
tion, and of determining the separatrices between the ba
of attraction for a given function all form an equivalenc
class ofNP-completeproblems@17,18#.

Typically it will only be possible to obtain lower and
upper bounds,uk

min anduk
max, on the volume fractions such

that $ukP@uk
min ,uk

max#%. Treating the$uk% as independent ran
dom variables distributed on the hyperplane~2.1! over the
open simplexukP(0,1) subject to these bounds, the joi
probability density for$uk% is given by

P~u1 ,...,uN!5)
k51

N

pk~uk!. ~5.1!
TABLE I. Performance of the method based on the more general analysis.

Test Problem
Number of
variables

Number of
minima

Number of
searches

Number of
function

evaluations

Probability of
missing

undiscovered
minima «Monte Carlo

Goldstein-Price 2 4 17 396 1.031026 2.431025

Branin 2 3 16 376 1.031026 4.531025

Hartman-3 3 3 16 352 1.031026 4.531025

Hartman-6 6 3 12 253 1.031026 5.531025
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Here for then discovered basins of attraction one may a
sume a uniform probability density for the volume fraction
within the numerically computed estimates ofuk

min and
uk
max,

pk~uk!5
1

uk
max2uk

min , ukP~uk
min ,uk

max!, ;kP@1,n#,

~5.2!

and zero outside. Letuu be given by

uu512(
l51

n

u l
min . ~5.3!
ed
os

on
ca
he
bl
ld
c
p

sio

lo-
i
r

e

,
se
-
,
Then, for theN2n undiscovered basins of attraction, th
following most conservative uniform probability densi
function may be adopted for the relative volume fractions

pk~uk!5
1

uu
, ukP~0,uu! ;kP@n11,N#

50, ukP~uu,1! ;kP@n11,N#. ~5.4!

Incorporating Eq.~5.1!–~5.4! in the analysis of the quantify
ing parameter«, for the convergence of oursequential-
searchmethod, Eq.~4.5! now reads
«5

E
2`

`

exp~ i t!xb~ i tuu!)
k51

n E
uk
min

uk
max

exp~2 i tu!
umk

uk
max2uk

min du dt

E
2`

`

exp~ i t!)
k51

n E
uk
min

uk
max

exp~2 i tu!
umk

uk
max2uk

min du dt

. ~5.5!
r of
l
wer
ni-
-
er-

e

e

ng
een
me
ing
the
We note that

xb~ i tuu!5
i tuu

12exp~2 i tuu!
. ~5.6!

All of the integrals over infinite domains can be evaluat
numerically using the Gauss-Hermite quadrature while th
over finite domains can be evaluated analytically@19# or nu-
merically using the Gauss-Chebyshev quadrature.

Ellipsoidal lower bounds on the volume fractions
of the basins of attraction

Procedures for computing bounds on the volume fracti
of the basins with reasonable computational complexity
only be heuristic in design. The problem of computing t
upper bound on the volume fraction of a basin is tracta
only via a crude Monte Carlo estimation which itself wou
require too many objective function evaluations. For the la
of a better procedure we thus advocate setting the up
boundsuk

max to uu . However, it is fairly straightforward to
estimate lower bounds of the basin volumes.

Let us assume that the configuration space is of dimen
n. Leading to a local minimumx* will be a set of points
$x1 ,x2 ,...,xm% obtained during the process of conducting
cal searches from a uniformly distributed sample of points
the configuration space. This set includes points conside
at each step in the location of theCauchypoint along a
Cauchy arc of descent. Let the function take the valu
$ f 1 , f 2 ,...,f m% at the points$x1 ,x2 ,...,xm%. Furthermore, let
its value and Hessian at the local minimumx* be, respec-
tively, denoted byf * andH*21. Let f̄ denote the smallest
next to smallest or median of the values in the
$ f 1 , f 2 ,...,f m%. Choose the ellipsoid

En5$xu~x2x* !TH*21~x2x* !< f̄2 f * % ~5.7!
e

s
n

e

k
er

n

n
ed

s

t

centered such that it just contains the maximum numbe
feasible points$x1 ,x2 ,...,xm% generated during the loca
search. Its volume could serve as an estimate for the lo
bound of the basin of attraction pertaining to the local mi
mum x* . The volume of this ellipsoid is computed by con
sidering an ellipsoid as an affine transformation of a hyp
sphere.

Denote by

Vn5$xuxTx<1% ~5.8!

the hypersphere inn dimensions. Its volume is given by th
well-known formula

V~Vn!5
pn/2

GS n12

2 D . ~5.9!

We are now ready to write down the formula for the volum
of the ellipsoid given by Eq.~5.7!. It is given by

V~En!5V~Vn!udet~Q!u~ f̄2 f * !n/2, ~5.10!

where the matrixQ is obtained from the relation

H*5QQT. ~5.11!

Alternatively, the volume of the convex hull encompassi
the points obtained during the local searches could have b
used as an estimate of the lower bound of the basin volu
fraction, but the method of ellipsoids is preferred over us
convex hulls because it delivers a greater lower bound on
basin volume fraction.
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TABLE II. Performance of the method with ellipsoidal estimation of the lower bounds of volum
fractions.

Test Problem
Number of
variables

Number of
minima

Number of
searches

Number of
function

evaluations

Probability of
missing

undiscovered
minima «Monte Carlo

Goldstein-Price 2 4 17 396 1.031026 2.431025

Branin 2 3 16 376 1.031026 4.531025

Hartman-3 3 3 13 278 1.031026 2.931024

Hartman-6 6 3 12 253 1.031026 5.531024
a

e

s of
of

rom

e

s the
c-
VI. THE PROBABILITY OF MISSING
THE GLOBAL MINIMUM

An important issue is the probability of missing the glob
minimum. Let P(v/m1 ,...,mn ,M ) be the probability that
there arev undiscovered minima aftern minima have been
discovered inM local searches on the functionf (x). Then
the conditional probability that one of thev undiscovered
minima is the global minimum is given byv/(n1v). Let
P(miss/m1 ,...,mn ,M ) denote the probability of missing th
global minima having discoveredn minima inM searches.
Then we may write

P~miss/m1 ,...,mn ,M !5 (
v51

`
v

v1n
P~v/m1 ,...,mn ,M !

5 (
v51

`
v

v1n

3
P~m1 ,...,mn1v /M ,n1v!

P~m1 ,...,mn /M ,n!

«

11«
.

~6.1!

But, from Bayes’ theoremP(v/m1 ,...,mn ,M ) is propor-
tional to P(m1 ,...,mn1v /M , n1v) and we may write ge-
nerically

P~v/m1 ,...,mn ,M !5
1

2p E
2`

`

exp~ i t!S exp~2 i t!21

2 i t D v

3F~t;$m1 ,...,mn%,$u1 ,...,un%!dt.

~6.2!
l

Here the functional form ofF(t;$m1 ,...mn%,$u1 ,...,un%)
depends on the method of computing the volume fraction
the basins of attraction. We thus have for the probability
missing the global minimum

P~miss/m1 ,...,mn ,M !5
1

2p E
2`

`

exp~ i t!S~t;n!

3F~t;$m1 ,...,mn%,$u1 ,...,un%!dt,

~6.3!

whereS(t;n) is given by

S~t;n!5 (
v51

`
v

v1n S exp~2 i t!21

2 i t D v

. ~6.4!

It is straightforward to show that

S~t;n!5
y

12y
1

n

yn ln~12y!1
n

yn (
v51

n
yv

v
, ~6.5!

where y5@12exp(2it)#/it, and thus Eq.~6.3! may be
readily evaluated via the Gauss-Hermite quadrature. F
Eqs.~6.1! and ~3.13! it follows that

1

~11n!

«

~11«!
,P~miss/m1 ,...,mn ,M !,

«

~11«!
,«

~6.6!

andP(miss/m1 ,...,mn ,M ),« provides a less conservativ
stopping rule than« itself. Accordingly, we shall use« to set
the stopping rule in the following.

The development in this section can be used to asses
likelihood of missing the global minimum provided the fun
an.
TABLE III. Performance of simulated annealing and the Bayesian method of Boender and Rinooy K

Test Problem
Number of
variables

Number of
minima

Number of function
evaluations required by
simulated annealing

Number of function
evaluations required by
the method of Boender

and Rinooy Kan

Goldstein-Price 2 4 563 721
Branin 2 3 505 683
Hartman-3 3 3 1459 633
Hartman-6 6 3 4648 318
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TABLE IV. The four best optimal solutions for the bifunctional catalyst design problem.

No. 1 No. 2 No. 3 No. 4

u(0) 0.6661 0.6651 0.6637 0.9
u(1) 0.6734 0.6721 0.90 0.6724
u(2) 0.6764 0.9 0.9 0.6755
u(3) 0.9 0.9 0.9 0.9
u(4) 0.9 0.9 0.9 0.9
u(5) 0.9 0.9 0.9 0.9
u(6) 0.9 0.9 0.9 0.9
u(7) 0.9 0.9 0.9 0.9
u(8) 0.9 0.9 0.9 0.9
u(9) 0.9 0.9 0.9 0.9
objective function 10.094231023 10.052731023 9.904731023 9.880531023
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ce
tion does not exhibit the pathology of a global minimu
with zero volume fraction such as the Diracd function.

VII. PERFORMANCE AND COMPARATIVE
ANALYSIS ON TEST PROBLEMS

In this section we present the performance of our sequ
tial random search method on a variety of test proble
Comparisons with the Bayesian multistart method
Boender and Rinooy Kan@10# and the simulated annealin
method of Dekkers and Aarts@2# are also presented. The te
problems considered range in complexity from simple u
constrained optimization of algebraic functions, to the op
mal control of a catalytic reactor and to the conformati
problem of an atomic microcluster. The yardstick for perfo
mance of each method is the total number of function co
putations required during the execution of the method. T
local minimizations were performed using a conjuga
gradient method@20#. In implementing the Bayesian multi
start method of Boender and Rinooy Kan@10#, we used the
stopping criterion that the expected volume fraction of
undiscovered regions of attraction of the function^Q& be no
larger than 0.005. Appendix B provides a sketch of the
evant details of their method. The details of the simula
annealing method implemented by us are identical to th
of the one due to Dekkers and Aarts@2#. Appendix C pro-
vides a sketch of this annealing method. For the purpose
differentiating among the various stopping criteria of o
method we will denote by«Monte Carlo, «general, and
«ellipsoidal, the stopping criteria due to the three differe
analyses presented earlier. It was found that the stop
criterion due to«Monte Carlo is unreliable in general, and in
implementations of our method we imposed the stopping
terion that the probability of undiscovered minima be
n-
s.
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larger than 1.031026, i.e., «generalor «ellipsoidal<1.031026.
In our analysis,̂Q& is given by

^Q&5 (
v51

` E
0

1

QP~Q/v!P~v/m1 ,...,mn ,M !dQ,

~7.1!

whereQ is the unknown undiscovered volume fraction a
P(Q/v) is its conditional probability density givenv undis-
covered basins. SinceQP(0,1) holds, Eq.~7.1! can be re-
placed by the inequality

^Q&<
«

11«
. ~7.2!

Accordingly, choosinĝQ&<0.005 is equivalent to choosin
«generalor «ellipsoidal.0.005 as a stopping criterion. Thus o
test of the method of Boender and Rinooy Kan is much l
stringent than that of our own methods.

A. Four classical test problems from the global optimization
literature

We consider four standard test functions@21–23# for glo-
bal optimization. The first problem is the Goldstein-Pri
problem. It is given by

f ~x1 ,x2!5@11~x11x211!2~19214x113x1
2214x2

16x1x213x2
2!#@301~2x123x2!

2

3~18232x1112x1
2148x2236x1x2127x2

2!#

~7.3!
TABLE V. Performance of the method based on the more general analysis.

Test Problem
Number of
variables

Number of
minima

Number of
searches

Number of
function

evaluations

Probability of
missing

undiscovered
minima «Monte Carlo

Bifunctional Catalyst
Design
Problem

10 25 117 2942 1.031026 0.0
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TABLE VI. Performance of the method with ellipsoidal estimation of the lower bounds of volu
fractions.

Test Problem
Number of
variables

Number of
minima

Number of
searches

Number of
function

evaluations

Probability of
missing

undiscovered
minima «Monte Carlo

Bifunctional catalyst
Design problem

10 25 109 2691 1.031026 0.0
c-

b

th

of

th

e

od
he
.
-
r
oo
an

ers

e-
ion
set
he
of
d as
and possesses four minima in the region$22<x1 , x2<2%
over which it is to be minimized. The global minimum o
curs at (0,21) and has the value of 3.

The second problem is the Branin problem. It is given

f ~x1 ,x2!5S x22 5.1

4p2 x1
21

5

p
x126D 2

110S 12
1

8p D cosx1110 ~7.4!

and possesses three minima all of which are global in
region$25<x1<10,0<x2<15% over which it is to be mini-
mized.

The last two functions belong to the Hartman family
problems and are denoted asH3 andH6. The Hartman fam-
ily of functions is given in general by

f ~x1 ,x2 ,...,xn!52(
i51

l

ciexpS 2(
j51

n

ai j ~xj2pi j !
2D .

~7.5!

In theH3 test functionl54 andn53. In theH6 test func-
tion l54 andn56. The parameters$ci%, $ai j %, and$pi j % for
each of these problems are given in Appendix D. Both
three-dimensionalH3 function and the six-dimensionalH6
function have four minima in the region$xPRnu0<xj
<1, l< j<n% over which they have to be minimized. Th
location of thei th local minimum is approximatelypii and
its value is approximately2ci . One may also note thatai j is
proportional to thej th eigenvalue of the Hessian at thei th
local minima.

Tables I and II exhibit the performance of our meth
with the stopping criteria, respectively, derived from t
more general analysis of Sec. IV and the analysis of Sec
with explicit incorporation of lower bounds into the formu
lation using volumes of ellipsoids. Table III depicts the pe
formance of the Bayesian method of Boender and Rin
Kan and the simulated annealing method of Dekkers
Aarts. Also presented for each test problem is the value
y

e

e

V

-
y
d
of

«Monte Carlo corresponding to the stopping set of paramet
obtained for«generaland«ellipsoidal.

B. An optimal control problem in the design
of bifunctional catalysts

We now consider a problem@14# in the conceptual design
of a bifunctional catalytic reactor for the conversion of m
thylcyclopentane to benzene. It concerns the optimizat
over a trajectory where the dynamics are described by a
of coupled nonlinear ordinary differential equations. T
function to be maximized represents the concentration
benzene at the end of a tubular reactor and is describe
follows:

minimize J„u~ t !…52x7~ t f !,

subject to the constraints

d

dt
x1~ t !52k1x1~ t !, x1~ t !51.0,

d

dt
x2~ t !5k1x1~ t !2~k21k3!x2~ t !1k4x5~ t !, x2~ t !50.0,

d

dt
x3~ t !5k2x2~ t !, x3~ t !50.0,

d

dt
x4~ t !52k6x4~ t !1k5x5~ t !, x4~ t !50.0,

~7.6!
d

dt
x5~ t !5k3x2~ t !1k6x4~ t !2~k41k51k81k9!x5~ t !

1k7x6~ t !1k10x7~ t !, x5~ t !50.0,

d

dt
x6~ t !5k8x5~ t !2k7x6~ t !, x6~ t !50.0,

d

dt
x7~ t !5k9x5~ t !2k10x7~ t !, x7~ t !50.0,
Kan.
TABLE VII. Performance of simulated annealing and the Bayesian method of Boender and Rinooy

Test Problem
Number of
variables

Number of
minima

Number of function
evaluations required by
simulated annealing

Number of function
evaluations required by
the method of Boender

and Rinooy Kan

Bifunctional catalyst
Design problem

10 25 26 471 3856
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where

ki5(
j51

4

ci j @u~ t !# j21, i51,2,...,10,

0<t<t f52000 gm h/mol,

and

0.60<u~ t !<0.90.

Here x1(t) denotes moles of methylcyclopentane, the re
tant, whilex7(t) denotes moles of benzene, the desired pr
uct. Additionally, we may note that

u5
~mass of hydrogenation component!

~total mass of catalyst!
,

e
n
e
o
o
a

-
-

TABLE VIII. Lennard-Jones atomic-microcluster problem.

Number of
particles

Number of
local optima

Globally maximum
binding energy

3 1 3.0
4 1 6.0
5 1 9.104
6 2 12.712
7 4 16.505
8 8 19.821
9 14 24.113
10 50 28.422
11 132 32.766
12 451 37.968
13 988 44.327
14 2497 47.845
t5
~total mass of catalyst up to a given section of the reactor!

~molar flow rate of methylcyclopentane into the reactor!
,

and

t f5
~total mass of the catalyst in the reactor!

~molar flow rate of methylcyclopentane into the reactor!
.

ma-

ts
.
od
he
The coefficients$ci j % are given in Appendix E. To obtain th
solution of this optimal control problem we convert it to a
optimal parameter estimation problem by dividing the tim
interval into ten equal sections each of length 200 gm h/m
and seek the ten piecewise constant contr
@u(0),u(1),...,u(9)# that maximize the benzene concentr
l
ls
-

tion at the reactor outlet. This ten variable parameter esti
tion problem possesses 25 local optima@14#, one of which is
the global optimum. The globally optimal solution and i
three nearest suboptimal solutions are shown in Table IV

Tables V and VI exhibit the performance of our meth
with the stopping criteria, respectively, derived from t
TABLE IX. Performance of the method based on the more general analysis.

Number of
particles in the
Lennard-Jones
Cluster

Number of
variables

Number of
optima

Number of
searches

Number of
function

evaluations

Probability of
missing

undiscovered
minima «Monte Carlo

3 6 1 20 611 1.031026 3.731026

4 9 1 20 557 1.031026 3.731026

5 12 1 20 548 1.031026 3.731026

6 15 2 31 1031 1.031026 3.831029

7 18 4 62 1871 1.031026 1.4310217

8 21 8 114 2178 1.031026 0.0
9 24 14 197 5332 1.031026 0.0
10 27 50 702 21 859 1.031026 0.0
11 30 132 1839 42 524 1.031026 0.0
12 33 451 6339 19 677 9 1.031026 0.0
13 36 988 13 618 43 046 1 1.031026 0.0
14 39 2497 34 901 12 216 11 1.031026 0.0
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TABLE X. Performance of the method with ellipsoidal estimation of the lower bounds of volume
tions.

Number of
particles in the
Lennard-Jones

cluster
Number of
variables

Number of
optima

Number of
searches

Number of
function

evaluations

Probability of
missing

undiscovered
minima «Monte Carlo

3 6 1 20 611 1.031026 3.731026

4 9 1 20 557 1.031026 3.731026

5 12 1 20 548 1.031026 3.731026

6 15 2 31 1031 1.031026 3.831029

7 18 4 59 1759 1.031026 9.6310217

8 21 8 111 2116 1.031026 0.0
9 24 14 190 5137 1.031026 0.0
10 27 50 689 21 462 1.031026 0.0
11 30 132 1814 41 928 1.031026 0.0
12 33 451 6302 19 567 7 1.031026 0.0
13 36 988 13 584 42 933 6 1.031026 0.0
14 39 2497 34 828 12 188 93 1.031026 0.0
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analysis about the more general analysis and the ana
with explicit incorporation of lower bounds into the formu
lation using volumes of ellipsoids. Table VII depicts the pe
formance of the Bayesian method of Boender and Rin
Kan and the simulated annealing method of Dekkers
Aarts. Also presented for each test problem is the value
«Monte Carlo corresponding to the stopping set of paramet
for «generaland«ellipsoidal.

C. An atomic-microcluster conformation problem

We consider the restricted problem of describing
ground state of a classicalN-particle system interacting
through the Lennard-Jones pair potential. The potentia
given conventionally in reduced units

nLJ~r !5r21222r26, ~7.7!

wherenLJ(r ) is the potential in units of the well depth, an
r is the interparticle distance in units of the distance at
sis

-
y
d
of
s

e

is

e

potential minimum. The objective is then to find the glob
minimum of the potential energy hypersurface defined by

VLJ~r
N!5 (

i51

N21

(
j5 i11

N

nLJ~ ur i2r j u! ~7.8!

subject to translational and rotational invariance of the cl
ter. This problem has 3N26 degrees of freedom. Hoare an
McInnes@15# have shown that the number of local minim
of the potential energy surface of a Lennard-Jones clu
becomes large growing faster than linearly inN. The Baye-
sian method of Boender and Rinooy Kan has been con
ered earlier for the location of the globally maximum bindin
energy of such clusters@24#. We consider the performance o
our method on twelve clusters ranging from 3 to 14 particl
Table VIII shows the global minimum values for each
these clusters.

Tables IX and X exhibit the performance of our meth
with the stopping criteria, respectively, derived from t
an.
TABLE XI. Performance of simulated annealing and the Bayesian method of Boender and Rinooy K

Number of particles in
the Lennard-Jones

cluster
Number of
variables

Number of
optima

Number of function
evaluations required by
simulated annealing

Number of function
evaluations required by
the method of Boender

and Rinooy Kan

3 6 1 19 855 651
4 9 1 28 247 588
5 12 1 33 261 546
6 15 2 47 459 1188
7 18 4 61 073 1921
8 21 8 69 719 2299
9 24 14 84 536 5564
10 27 50 91 329 22 268
11 30 132 10 354 4 43 334
12 33 451 30 114 3 19 821 9
13 36 988 58 726 1 43 702 6
14 39 2497 70 149 36 12 362 35
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more general analysis and the analysis with explicit incor
ration of lower bounds into the formulation using volumes
ellipsoids, respectively. Table XI depicts the performance
the Bayesian method of Boender and Rinooy Kan and
simulated annealing method of Dekkers and Aarts. Also p
sented for each test problem is the value of«Monte Carlo cor-
responding to the stopping set of parameters for«generaland
«ellipsoidal.

VIII. CONCLUSIONS: FUTURE WORK

Our Bayesian sequential random search method has
shown to be a reliable tool for locating the global minimu
of multimodal functions of continuous variables. Within th
framework of the general analysis and the ellipsoidal estim
tion of basin lower bounds its performance compares w
with those of the Bayesian method of Boender and Rino
Kan @10# and the simulated annealing method of Dekk
and Aarts@2#.

In studying the results of the computations described
Sec. VII, certain definitive patterns can be identified. Due
the combinatorial nature of the transitions in the sea
space, simulated annealing possesses a computational
plexity which is exponential in the dimensions of the sea
space independent of the total number of minima suppo
by the objective function. On the other hand, both the Ba
sian method described in Sec. III–VI, and the Bayes
method of Boender and Rinooy Kan possess computati
complexities that are strong functions of the total number
minima supported by the objective function while growin
algebraically, and hence weakly, as a function of the dim
sions of the search space. Recalling the identities of E
~7.1! and~7.2!, we note that the stopping criterion used in t
implementations of the Bayesian method described in
paper is much more stringent than that used in the implem
tation of the Bayesian method of Boender and Rinooy K
Tables I–XI attest to the fact that the latter method requ
more function evaluations than the former to locate the g
bal minimum with sufficient assurance. Furthermore, the
of identical stopping criteria for both methods would on
serve to amplify the difference between the number of fu

TABLE XII. Parameters for theH3 function.

i ai1 ai2 ai3 ci pi1 pi2 pi3

1 3 10 30 1 0.368 9 0.1170 0.267
2 0.1 10 35 1.2 0.469 9 0.4387 0.747
3 3 10 30 3 0.109 1 0.8732 0.554
4 0.1 10 35 3.2 0.038 15 0.5743 0.882

TABLE XIII. Parameters for theH6 function.

i ai1 ai2 ai3 ai4 ai5 ai6 ci

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2
-
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tion evaluations required by the latter and that required
the former.

With respect to the Bayesian method described in t
paper, two stopping criteria have been considered: that
to the general analysis of Sec. IV and that due to the el
soidal estimation of basin volume fractions described in S
V. As seen in Tables I–III for the four classical problem
from the global optimization literature, both stopping criter
require an almost equal number of function evaluations
termination within an allowance of fluctuations in the num
ber of local searches required. However, when one exam
the results of the bifunctional catalyst design problem
Tables IV–VII and of the conformation problem of th
Lennard-Jones clusters in Tables VIII–XI it is evident th
knowledge of the basin volume fractions, although heuris
serves to diminish the number of function evaluations
quired for the termination of the Bayesian algorithm. Thu
from the results of the various computations, it cannot
overemphasized that more accurate, rapid estimate of lo
and upper bounds on basin volume fractions are require
obtain a sharper stopping criterion for the method.

Finally, we note that the Monte Carlo stopping criterio
of Eq. ~3.16! is clearly inadequate. It underestimates the to
number of undiscovered minima when the total number
minima supported by the function is very large and when
total number of minima supported by the function is small
overestimates the number of undiscovered minima of
function if the visitation numbers to the individual minim
are not sufficiently large.
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APPENDIX A: EVALUATING THE SUPREMUM OF
P„µ1 ,...,µN /u1 ,...,uN ,M ,N…

Consider the multinomial distribution given by

P~m1 ,...,mN /u1 ,...,uN ,M ,N!

5M !)
k51

v uk
mk

mk!
5

M !

Pk51
v mk!

expS (
k51

v

mk ln ukD ,
~A1!

TABLE XIV. Parameters for theH6 function ~continued!.

i pi1 pi2 pi3 pi4 pi5 pi6

1 0.1312 0.1696 0.5569 0.0124 0.8383 0.588
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.999
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.038
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TABLE XV. Coefficients for the rate constants.

i c i1 ci2 ci3 ci4

1 0.002 918 487 20.008 045 787 0.006 749 947 20.001 416 647
2 9.509 97 235.009 94 42.833 29 217.333 3
3 26.820 93 295.560 79 113.039 8 244.299 97
4 208.724 1 2719.805 2 827.746 6 2316.665 5
5 1.350 005 26.850 027 12.166 71 26.666 689
6 0.0192 199 5 20.079 453 20 0.110 566 6 20.050 333 33
7 0.132 359 6 20.469 625 5 0.553 932 3 20.216 666 4
8 7.339 981 225.273 28 29.933 29 211.999 99
9 20.395 053 4 1.679 353 21.777 829 0.497 498 7
10 20.000 025 046 65 0.010 058 54 20.019 866 96 0.009 833 470
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where 0<uk<1, ;k. Introducing a Lagrange multiplierl,
this supremum is the sumpremum of

(
k51

v

~mk ln uk2luk!2l (
k5v11

N

uk , ~A2!

which has negative curvature with respect touk , 1<k<v.
Therefore~A2! is a maximum with respect touk , 1<k<v
when

uk5uk*5
mk

l
,1<k<v, ~A3!

and is a supremum whenuk50, v11<k<N becausel
5M is positive.

APPENDIX B: THE BAYESIAN METHOD
OF BOENDER AND RINOOY KAN

In Boender and Rinooy Kan’smultistartmethod for glo-
bal optimization@10# the configuration space is repeated
sampled at batches of uniformly distributed points and lo
searches initiated therefrom. The probability of the aggreg
of events resulting from their multistart method is given by
generalized multinomial distribution. Given a uniform pri
distribution of local minima and a generalized multinom
distribution of the outcome$N,w%5$N1 ,N2 ,...,Nw%, the
posterior expected value of the total relative volume of o
served regions of attraction, denoted byV, is given by

E~V/$N,w%!5
~N2w21!~N1w!

N~N21!
, N>w12.

~B1!

Herew is the total number of local minima discovered
N local searches and$Ni ,1< i<w% the frequency of visits to
the minima. The proof of this statement can be referred to
Boender and Rinooy Kan@10#. Following Maier@24#, we set
the stopping criterion for the Bayesian method of Boen
and Rinooy Kan in our implementations such th
E(V/$N,w%)>0.995.
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APPENDIX C: THE SIMULATED ANNEALING METHOD
OF DEKKERS AND AARTS

The algorithm of Dekkers and Aarts, as applied to a m
tivariate functionf (x), xPS#Rn, is stated in text below; we
may note here that the parameterT is the control paramete
notionally equivalent to temperature in statistical physics a
L is the length of the Markov chain which is fixed for a give
instance of the problem.

In the simulated annealing method, an initial choice of t
control parameterT and of a configuration pointx is taken.
Thereupon,L steps of the following Markovian process a
undergone: A new pointy in the configuration space i
sampled; a transitionx←y is made if the objective function
f (.) satisfies the relationf (y)< f (x) or if the functional
exp{2@f(y)2f(x)#/T} is greater than a random number draw
from a uniform distribution over the interval@0,1!. After un-
dergoing this Markovian process, a criterion is tested
lowering the cooling parameterT. If it is necessary to cool
the system further, the Markovian process is reiterated wi
new value of the cooling parameter. If it is determined th
there is no further need to cool, the global optimum has b
located.

For the cooling schedule we used the parameters
scribed by Dekkers and Aarts@2#: g050.9, d
50.1, es51.031024, andL0510. Initially, the temperature
must be sufficiently large such that almost all transitions
accepted. This is achieved by generating a number of tr
say t0 , and requiring that the initial acceptance ratiog0 be
close to unity, where the acceptance ratio is defined as
ratio of the number of accepted transitions to the numbe
proposed transitions. The initial value of the temperature
computed by the following expression:

T05^D f1&S t1
t1g01~12g0!t

D 21

~C1!

where t2 and t1 , respectively, denote the number of tria
with @D f yx5 f (y)2 f (x)#<0 andD f yx.0. (D f1) denotes
the average of those values ofD f yx for which D f yx.0. The
temperature is decreased according to

T←TS 11T
ln~11d!

3s~T! D 21

, ~C2!
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wheres(T) denotes the standard deviation of the values
the objective function of all the points of the Markov chain
temperatureT. The constantd is called the distance param
eter and determines the rate of decrement of the tempera
The simulated annealing algorithm is terminated when

U ]

]T
^ f s~x;T!&

T

^ f ~x;T0!&
U,es . ~C3!

Here^ f (x;T0)& is the mean value of the objective function
the points found in the initial Markov chain,^ f s(x;T)& is the
smoothed value of̂f (x;T)& over a number of chains in orde
to reduce the fluctuations of^ f (x;T)&, andes is the stopping
parameter. The length of the Markov chain is chosen to

L5L0 dim~S!5L0n ~C4!

and a new pointy is generated from a current pointx ac-
cording to
m

ti-
f
t

re.

y5LS~x!, if w.0.75

5U~S!, if w<0.75, ~C5!

where w is a random number uniformly distributed i
@0,1!. LS(x) is a local search procedure that generate
point y, not necessarily a local minimum, along a desc
direction ofx andU(S) is a point drawn from the uniform
distribution over the compact setS.

APPENDIX D: PARAMETERS FOR THE HARTMAN
FAMILY OF FUNCTIONS

Table XII gives the parameters for theH3 function while
Tables XIII and XIV give the parameters for theH6 func-
tion.

APPENDIX E: PARAMETERS FOR THE BIFUNCTIONAL
CATALYST PROBLEM

The parameters for the rate constants for the bifunctio
catalyst design problem are given in Table XV.
on
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ch
92
@1# S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science220,
671 ~1983!.

@2# A. Dekkers and E. Aarts, Math. Program.50, 367 ~1991!.
@3# J. H. Holland, Sci. Am. July Issue, 66~1992!.
@4# D. A. Coley, Contemp. Phys.37 ~2!, 145 ~1996!.
@5# C. A. Floudas and V. Visweswaran, Comput. Chem. Eng.14,

1397 ~1990!.
@6# V. Visweswaran and C. A. Floudas, Comput. Chem. Eng.14,

1419 ~1990!.
@7# J. F. Benders, Num. Math.4, 238 ~1962!.
@8# J. Mockus,Bayesian Approach to Global Optimization~Klu-

wer, Boston, 1989!.
@9# R. Zielinski, Math. Program.21, 348 ~1981!.

@10# C. G. E. Boender and A. H. G. Rinooy Kan, Math. Progra
37, 59 ~1987!.

@11# M. Piccioni and A. Ramponi, Optimization21, 697 ~1990!.
@12# C. G. E. Boender and A. H. G. Rinooy Kan, J. Global Op

mization1, 331 ~1991!.
@13# M. H. De Groot,Optimal Statistical Decisions~McGraw-Hill,

New York, 1970!.
@14# R. Luus, J. Dittrich, and F. J. Keil, Can. J. Chem. Eng.70, 780

~1992!.
.

@15# M. R. Hoare and J. McInnes, Adv. Phys.32, 791
~1983!.

@16# M. J. D. Powell,Approximation Theory and Methods~Cam-
bridge University Press, Cambridge, England, 1981!.

@17# G. Elekes, Discrete Comput. Geometry1, 289 ~1986!.
@18# I. Barany and Z. Furedi,Computing the Volume is Difficult,

Proceedings of the Eighteenth Annual ACM Symposium
Theory of Computing~ACM, New York, 1986!, p. 442.

@19# E. T. Whittaker and G. N. Watson,A Course of Modern Analy-
sis ~Cambridge University Press, Cambridge, Englan
1952!.

@20# S. G. Nash, SIAM J. Numer. Anal.21 ~4!, 770 ~1984!.
@21# L. C. W. Dixon and G. P. Szego,Towards Global Optimiza-

tion ~North-Holland, Amsterdam, 1975!, Vol. I.
@22# L. C. W. Dixon and G. P. Szego,Towards Global Optimiza-

tion ~North-Holland, Amsterdam, 1978!, Vol. II.
@23# A. Torn and A. Zilniskas,Global Optimization ~Springer-

Verlag, Berlin 1989!.
@24# R. S. Maier, Army High Performance Computing Resear

Center, University of Minnesota, Report No. 92-072, 19
~unpublished!.


